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Section S1: Physical mechanism of |𝛁𝑻𝟏|/|𝛁𝑻𝟎| as a constant 

The temperature gradient in the core and background regions varies with the external 

temperature gradient, while the ratio of the former to the latter is constant, regardless of the 

external temperature gradient. Here, the external temperature gradient is defined as (TH - TC)/L, 

which is uniform in the background region because the metamaterial works without disturbing 

the background temperature field. See the schematic in Figure 1b in the main text. To 

understand the above, we give the analytic expression of the temperature gradient ratio when 

considering an anisotropic monolayer structure (bilayer structure can also be regarded as the 

anisotropic monolayer case) 

                |∇%!|
|∇%"|

= &'(!#!$!(%#!&!)!*''*(
(!%#!(&*!,)!*'')()!*''&*()&(%%#!(*!,)!*'')()!*'',*()

,  (S1) 

where 𝑅. , 𝑅/  are the inner and outer radii of the anisotropic layer. 𝜅. , 𝜅0  are the thermal 

conductivity of the core and background regions. 𝜅11, 𝜅22 are the radial and tangential thermal 

conductivity of the anisotropic layer. 𝑚. = -𝜅22 𝜅11⁄ . As we can see, the ratio indeed doesn’t 

include the term of (TH - TC)/L (derived from the continuity equation of heat flow[1]). The 

temperature gradient ratio can reflect the temperature field modulation effect of the 

metamaterial on the external temperature field, therefore representing thermal functionality 

(ratio < 1 for cloaking; ratio > 1 for concentration). 

 

Section S2: Dataset collection and training of ANN 

For collecting the dataset, we perform finite-element simulations with commercial software 

“COMSOL MULTIPHYSICS” linking MATLAB. Thanks to the bilayer structure’s high 

performance without disturbing the background’s thermal fields, we replace the bilayer 

structure with a pure background (size: 200 × 200 mm2) for convenience of dataset collection. 

In Section S3, we elaborate the rationality of replacing the bilayer structure with a pure 

background for dataset collection. After setting the left boundary as a high temperature (𝑇3) 

and the right boundary as a low temperature (𝑇4), we could extract the temperature information 

𝑻(5)  at the circle with a radius of R3 = 60 mm from the finite-element simulation results. 

Drawing parallels from nonlinear optics[2]-specifically, the way polarizability or electrical 

conductivity is influenced by electric intensity-we introduced the concept of a configurable 

nonlinear thermal material whose effective thermal conductivity [equivalent to rotating velocity 

𝜔.,789:;<(∇𝑇)] being responsive to external temperature gradients ∇𝑇. For a predefined scale, 

these external temperature gradients can be simplified to the external temperature difference, 

given a consistent interval L between the hot and cold boundaries. This insight was crucial in 
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formulating the corresponding labeled 𝜔.,789:;<, laying the foundation for our configurable 

nonlinear thermal material. Therefore, we artificially set the corresponding labeled 𝜔.,789:;< as 

 𝜔.,789:;<(∆𝑇) = 

⎩
⎪
⎨

⎪
⎧0, ∆𝑇 >

'(%),+,-&%.,+/0),∆%"
>

𝜔<98? × 𝜑.(∆𝑇),
/(%),+,-&%.,+/0),0∆%"

>
< ∆𝑇 ≤ '(%),+,-&%.,+/0),∆%"

>

(𝜔@8A − 𝜔<98?) × 𝜑/(∆𝑇) + 𝜔<98?, ∆𝑇 ≤
/(%),+,-&%.,+/0),0∆%"

>

        (S2) 

where ∆𝑇 = 𝑇3 − 𝑇4 is the temperature difference between external hot and cold sources, 𝑇4 

went from 𝑇4,@B? = 283 K to 𝑇4,@8A = 𝑇4,@B? + ∆𝑇5	K, and 𝑇3 went from 𝑇3,@B? = 𝑇4 + ∆𝑇5 

K to 𝑇3,@8A = 313  K. 𝜑.(∆𝑇) =
C&C.C×∆2$!"%"

>
 and 𝜑/(∆𝑇) =

'&C.C×∆2$!"%"
'

 are the antilinear 

modulation functions as empirical formulas. Such form ensures that smaller external 

temperature difference ∆𝑇  outputs larger rotating velocity 𝜔.,789:;<(∆𝑇) , thus leading to 

smaller target region’s temperature gradient. Here, ∆𝑇5 is the minimum temperature difference 

between external hot and cold sources (artificially given) when generating the dataset. We take 

∆𝑇5 = 10	K, transitional and maximal rotating velocity as 𝜔<98? = 0.001	rad s-1 and 𝜔@8A =

0.12	rad s-1, respectively. After iterating through all the high and low temperature values, the 

entire structure was rotated 1◦ around the center. The whole dataset was generated until the 

entire structure was rotated 360◦. During dataset collection, the temperatures at the left and right 

boundaries are the variables to calculate the labeled 𝜔.,789:;< without using the temperature 

information 𝑻(5). The reason is that the temperatures at the left (𝑇3) and right (𝑇4) boundaries 

are indeed vital determinants of 𝜔.,789:;<(∆𝑇). However, the external temperature settings (𝑇3 

and 𝑇4), which we utilize in Eq. (S2) are effectively mirror to the surrounding temperature 

values at R3 [𝑻(5)]. This means that when we reference the external temperature settings, we 

are indirectly accounting for the temperature information at R3. By substituting these external 

temperature settings (∆𝑇	 = 	𝑇3 	− 	𝑇4) into the Eq. (S2), we can directly obtain the target value 

for 𝜔.,789:;<(∆𝑇) . This approach allows us to maintain the fidelity of our model without 

explicitly referencing 𝑻(5) in the equation. While the temperature values at R3 may not appear 

explicitly in the equation, its effects are inherently captured through the external temperature 

settings. This makes the model both efficient and representative of the physical system. The 

modulation impact of Eq. (S2) on the device’s functionality is showcased in Figure 1c of the 

main text. 

Choosing the right hyperparameters for an artificial neural network is crucial for its 

performance. We decide commonly tuned hyperparameters, including learning rate (determines 
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the step size when updating the weights and biases), batchsize (number of training examples 

utilized in one iteration), batches (a batch is a subset of the training dataset, and the number of 

batches is determined by dividing the total number of training samples by the batch size), 

number of epochs (defines how many times the algorithm will cycle through the entire training 

dataset), number of hidden layers, and number of neurons per layer.[3-5] A popular method for 

hyperparameter tuning is grid search, where we specify a discrete set of values for each 

hyperparameter and evaluate every possible combination. Instead of evaluating all 

combinations, we perform a random search for hyperparameters from predefined distributions 

and evaluate a fixed number of these combinations. The rationale is that not all hyperparameters 

are equally important, and random search can efficiently explore the space with fewer trials. 

After all iterations, we select the hyperparameters that gave the best performance on the testing 

set, with an accuracy rate of over 90%. We define a cost function C to evaluate the performance 

of the ANN. We utilize the backpropagation algorithm to minimize the cost of the ANN. The 

backpropagation algorithm is a fundamental optimization method for training artificial neural 

networks (ANNs). It’s a supervised learning algorithm that allows the network to adjust its 

weights or biases based on the error of its predictions. To be more understandable, we have 

provided a flow chart (Figure S1) to illustrate the backpropagation process in the ANN. The 

input layer receives the initial data. A forward pass takes the data through the hidden layers and 

produces an output in the output layer. The network’s output is compared to the actual target to 

the cost function, which is then used in the backward pass to compute the derivative of the cost 

function. Based on the derivative and the learning rate (whose mathematical expression is the 

chain rule), the weights and biases are adjusted to minimize the cost function. This process 

repeats until convergence or for a specified number of epochs. 

 We give the cost function as 𝐶 = .
F
∑ 𝐶GF&.
GH5 = .

F
∑ [ReLU(𝜔.) − ReLU(𝜔.,789:;<)]/F&.
GH5 , 

and train the parameters (weights and biases) of the ANN via the backpropagation algorithm 

(based on the generated dataset, or say, training samples). Here, 𝐶G is a single cost function 

corresponding to a single training sample, and N is the total number of training samples. Now 

let's review the rules of connection between neurons and give the following mathematical 

symbols: 

𝐶G = [ReLU(𝜔.) − ReLU(𝜔.,789:;<)]/, (S3a) 

𝑧I
(J) =O 𝜔IK

(J)ℎK
(J&.) + 𝑏I

(J)
L3$!&.

KH5
, (S3b) 

ℎI
(J) = ReLUS𝑧I

(J)T, (S3c) 
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where ℎK
(J&.) and ℎI

(J) are activations of the k-th and j-th neuron in the (L-1)-th and L-th layer 

of the ANN, respectively. 𝜔IK
(J) is the weight between k-th neuron in the (L-1)-th layer and j-th 

neuron in the L-th layer. 𝑏I
(J) is the bias for the j-th neuron in the L-th layer. 𝑛J&. is the total 

number of neurons in the (L-1)-th layer. In particular, 𝑧5
(>)	is	𝜔. in our case. Next, we calculate 

the derivative of 𝐶G  to the parameters of the ANN, which is the core of backpropagation 

algorithm. Concrete chain rules are as follows: 

𝜕𝐶G
𝜕𝜔IK

(J) =
𝜕𝑧I

(J)

𝜕𝜔IK
(J)

𝜕ℎI
(J)

𝜕𝑧I
(J)

𝜕𝐶G
𝜕ℎI

(J) , (S4a) 

𝜕𝐶G
𝜕𝑏I

(J) =
𝜕𝑧I

(J)

𝜕𝑏I
(J)

𝜕ℎI
(J)

𝜕𝑧I
(J)

𝜕𝐶G
𝜕ℎI

(J) , (S4b) 

𝜕𝐶G
𝜕ℎK

(J&.) =O
𝜕𝑧I

(J)

𝜕ℎK
(J&.)

𝜕ℎI
(J)

𝜕𝑧I
(J)

𝜕𝐶G
𝜕ℎI

(J)

L3&.

IH5
, (S4c) 

𝜕𝐶G
𝜕ℎI

(J) =O
𝜕𝑧I

(J,.)

𝜕ℎI
(J)

𝜕ℎI
(J,.)

𝜕𝑧I
(J,.)

𝜕𝐶G
𝜕ℎI

(J,.)

L3&!&.

IH5
. (S4d) 

Based on this chain rule, weights and biases are updated when all training samples are cycled 

and cycled. Finally, the cost function is optimized to the minimum based on the 

backpropagation algorithm, all parameters are iterated to fit, and the performance of the ANN 

achieves the best. 

The proposed ANN with selected hyperparameters (Figure S2a) is trained with 114418 

labeled samples, and all the weights and biases are adjusted to their most appropriate values 

based on the backpropagation algorithm. We choose 10% of all samples as testing samples, and 

the accuracy of ANN reaches up to 92.7% (Figure S2b). Here, if the relative deviation between 

the output result from ANN and the target result is within 20%, the output result is accurate. 

Also, a mean square error has a good convergence effect; see Figure S2c. 

 

Section S3: The rationality of replacing the bilayer structure with a pure background for 

dataset collection 

We should prepare a set of input data and their targeted output data for collecting the dataset. 

In our case, the input data is the temperature values of the bilayer structure’s surroundings 

(circle R3) along the circumference in a counterclockwise direction from finite-element 

simulations. Due to the need for a large amount of training samples, we choose a background 

with simpler parameters as a replacement to fast collect these samples. The replaceable basis is 
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that this bilayer structure works without disturbing the background thermal field. To elaborate, 

we have added the comparison of temperature results from the two cases in different external 

temperature and rotating velocity settings. As shown in Figure S3, these temperature values 

from the background structure are precisely consistent with those of the bilayer structure. If the 

data is collected by including the bilayer structure, we get the same data with the case of the 

background. 

 

Section S4: Effect on background thermal fields of the heat-enhanced thermal diffusion 

metamaterial 

In the main text, we present the performance of the heat-enhanced thermal diffusion 

metamaterial in Figure 2, which shows enlarged-range temperature-gradient distributions in the 

core region under different ambient temperatures. To further showcase the effect on the 

background thermal fields, we plot temperature distributions on two lines of the bilayer 

structure in Figure S4a (from finite-element simulation results in Figure 2b). Here, Line 1 is 

tangent to the outer contour of the outer layer of the bilayer structure, and Line 2 passes through 

the center of the bilayer structure; see Figure S4a. We can see from Figure S4b that temperature 

data distributed along x direction on Line 2 has an enlarged-range inclination change in the core 

region compared to Line 1. Also, background temperature data on Line 1 and Line 2 attenuate 

uniformly along the direction of heat transfer, indicating undisturbed background thermal fields. 

We still demonstrate the effect for all three rotating velocities and all four directions of external 

thermal fields (from finite-element simulation results in Figure 2). Figure S5 displays 

temperature-gradient distributions in the background in the above cases, which are uniform 

under each rotating velocity and each direction of the external thermal field. These results 

indicate the heat-enhanced thermal diffusion metamaterial works well without affecting the 

background thermal fields. Figure S6 exhibits the original temperature distributions in the core 

region of the bilayer structure in all cases of Figure 2. 

 

Section S5: Response of heat-enhanced thermal diffusion metamaterial under different 

cold sources and non-uniform external thermal fields 

The heat-enhanced thermal diffusion metamaterial also works well in other cold sources. In the 

following simulations, the hot source (𝑇3 = 313 K) is fixed, while the cold source (𝑇4) is varied. 

We extract the temperature data (𝑇𝒂(5),	𝑇𝒃(5),	𝑇𝒄(5)) of N = 36 equally spaced positions in the 

yellow dashed circle in three cases (𝑇4 = 303, 293, 283 K) of a static bilayer structure, as shown 

in Figure S7a. In each case, the first data point corresponds to the temperature at the position 
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marked 0◦ in the dashed circle. The temperature of the other positions is taken counterclockwise, 

forming the input layer of the pre-trained ANN. Hence, the relevant rotating velocities of the 

PDMS 𝜔. are calculated as 0.109, 0.00079, 0 rad s-1, set in finite-element simulations. Finally, 

the temperature profiles (modulated T) with three 𝜔. under three cold sources are shown in 

Figure S7b-d and the corresponding temperature profiles of static pure background (original 

T0) are depicted in Figure S7e-g. To characterize the effect of the metamaterial on the original 

background thermal fields, we compute the difference between the temperature distributions in 

Figure S7b-d and those in Figure S7e-g; see Figure S7h-j. As expected, the temperature fields 

in the core region are modulated effectively. Notably, the temperature-difference distributions 

in the background are almost zero, and the background thermal fields are not disturbed when 

the heat-enhanced thermal diffusion metamaterial is operating. We then extract temperature-

gradient distributions in the core region from the results of Figure S7b-g. The original 

temperature-gradient distributions in Figure S7k (from Figure S7e-g) are modulated as results 

in Figure S7l (from Figure S7b-d), enlarging the temperature-gradient tunability in the core 

region. These results demonstrate the performance of the heat-enhanced thermal diffusion 

metamaterial under different cold sources. 

We further consider the performance of the heat-enhanced thermal diffusion 

metamaterial in non-uniform external thermal fields. Keeping the invariant sizes and 

components of the bilayer structure (Figure S4), we set two circle sources in the left (hot source), 

and right (cold source) parts, whose radii are both 0.003 m and positions of the center of the 

circles are at (±0.09, 0) m. The cold source is fixed at 283 K, and we vary the hot source to 

293, 303, and 313 K to create different external temperature conditions. We simulate the system 

using COMSOL MULTIPHYSICS, setting the background boundaries as thermal insulation. 

We collect the temperature data 𝑇𝒂(5), 𝑇𝒃(5), 𝑇𝒄(5) of the static bilayer structure’s surroundings 

under three external temperature conditions; see Figure S8a. By inputting 𝑇𝒂(5), 𝑇𝒃(5), 𝑇𝒄(5) 

into the pre-trained ANN, the relevant rotating velocities of the PDMS 𝜔. are calculated as 

0.127, 0.00097, 0 rad s-1, used in finite-element simulations. Finally, the temperature profiles 

(modulated T) with three 𝜔.  under three hot sources are shown in Figure S8b-d and the 

corresponding temperature profiles of static pure background (original T0) are depicted in 

Figure S8e-g. An intuitive phenomenon is the tunable uniformity of temperature distributions 

in the core region of Figure S8b-d, compared with relevant results in Figure S8e-g. To examine 

the effect of the heat-enhanced thermal diffusion metamaterial on the original background 

thermal fields, we calculate the temperature difference between Figure S8b-d and Figure S8e-

g; see Figure S8h-j. Notably, the temperature-difference distributions in the background are 
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almost zero, making known undisturbed background thermal fields when the heat-enhanced 

thermal diffusion metamaterial works. Subsequently, we extract temperature-gradient 

distributions in the core region from the results of Figure S8b-g. The original temperature-

gradient distributions shown in Figure S8k (from Figure S8e-g) are modulated in Figure S8l 

(from Figure S8b-d), enlarging the temperature-gradient tunability in the core region. These 

results demonstrate that the heat-enhanced thermal diffusion metamaterial is effective in non-

uniform external thermal fields. We further investigate the cases of three or four circle heat 

sources at random locations. These results in Figure S9 and Figure S10 demonstrate that the 

pre-trained ANN maintains robust performance, to some extent, on intelligently modulating the 

temperature fields, even when working in non-uniform external thermal fields. Specifically, 

smaller (larger) external temperature differences bring about larger (smaller) rotating velocities, 

resulting in smaller (larger) temperature gradients in the core region. 

 

Section S6: Weak direction-dependence of the metamaterial’s performance 

In this section, we discuss the weak direction-dependence of the metamaterial’s performance. 

The designed metamaterial comprises isotropic materials with isotropic geometry. Notably, 

every time the micro infrared camera operates, it starts capturing temperature data from a 

designated initial position (marked 0◦), regardless of the direction from which external thermal 

energy originates. The data is read sequentially in a counterclockwise direction and then fed 

into the ANN as input data, symbolized as 𝑇(5). While the external thermal flow’s direction 

changes, the extracted temperature values as input data are different for neurons of the input 

layer of the ANN, according to the given measurement rules. Even though there’s inconsistency 

in the N=36 temperature data points for the input layer when varying directions of external 

thermal flow, training the ANN with the dataset ensures that the metamaterial exhibits stable 

thermal responses to external thermal fields, regardless of their directionality. Specifically, the 

deviation between the output results under different external heat flow’s direction and the target 

result is less than 20%, ensuring a similar temperature field modulation effect (please see results 

in Figure S11). Here, if the relative deviation between the output result from ANN and the 

target result is within 20%, the output result is accurate. For clarity, we have provided a flow 

chart to illustrate this “direction-dependency” (Figure S11), reflected in the differences among 

input temperature values under different external heat flow’s directions. 

 

Section S7: Principle of the thermal signal modulator 
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In this section, we introduce the principle of the thermal signal modulator. Suppose Alice and 

Bob transmitted information to each other using a heat communication technology. They agreed 

on a rule for encoding information, where they prepare signal waveforms by presenting the 

temperature gradient distributions in the encoding zones of arranged thermal metadevices. For 

clarity, we discuss the mechanism of how one single thermal signal modulator works. See the 

schematic in Figure S12a. A common metadevice works under external temperature settings 

hot source 𝑇P  and cold source 𝑇Q , preparing an original temperature gradient signal in the 

encoding zone (the dashed box). Due to some thermal noise, original temperature gradient 

signals are sometimes enhanced or suppressed, whose oscillation amplitude is suppressed. For 

the accuracy of original signals, thermal signal modulators take effect, making thermal signals 

oscillate within a larger temperature gradient amplitude. For example, original temperature 

gradient signals oscillate within the range of 50 to 150 K m-1 in our case. The thermal signal 

modulator reads the surrounding temperature data at the yellow dashed circle. Then, the pre-

trained ANN outputs the rotating velocity 𝜔., modulating the temperature gradient in the core 

region of the bilayer structure (modulated zone in Figure S12a). According to the pre-trained 

ANN, smaller (larger) external temperature differences bring about larger (smaller) rotating 

velocities, resulting in smaller (larger) temperature gradients in the modulated zone. In our case, 

the original temperature gradient 50 (150) K m-1 is prepared for the ANN, outputting the 𝜔.= 

0.12 (0) rad s-1. Finally, the modulated temperature gradient is 0 (238.5) K m-1. We have realized 

the modulation of original thermal signals, making these signals oscillate within a larger range 

of 0 to 238.5 K m-1. 

 

Section S8: Effect of outer shape on the metamaterial’s performance 

Recently, researchers have designed thermal functional devices with an outer contour arbitrary 

shape, including the bilayer scheme (this requires non-uniform/anisotropic material distribution 

in the outer-layer metamaterial region while easy to prepare through 3D printing technology), 

based on topology optimization methods,[6-7] transformation thermotics,[8] or the conservation 

equation of heat flow.[9] Our work can be extended to scenes requiring complex shapes, while 

maintaining highly tunable performance. 

Specifically, we consider a bilayer structure whose outer and middle contours are 

replaced with square shape, and the side length of the outer and middle square are denoted by 

𝐿RSTU1  and 𝐿GLLU1 , respectively; see Figure S13a. Minor changes are made to the size 

parameters, where we set 𝐿RSTU1 	= 	0.12	m, 𝐿RSTU1 	− 	𝐿GLLU1 	= 2𝑑 = 0.042 m. Here, 𝑑 is the 

thickness of the outer layer. Other parameters are the same as cases in the main text. We first 
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divide the outer-layer metamaterial region into two parts with thermal conductivity of 

𝜿𝟏 =diag(𝜅.,VV,𝜅WW) and 𝜿𝟐 = diag(𝜅/,VV , 𝜅WW), respectively; see Figure S13a. According to 

the conservation equation of heat flow,[9] we get the thermal conductivity of the outer-layer 

metamaterial as 𝜿𝟏 = diag(9.8,300), 𝜿𝟐 = diag(9.8× J4567'
J4567'	&	J8997'

,300) W m-1 K-1, respectively. 

Then, we perform finite-element simulations to show the tunable performance of the designed 

device. Figure S13b-d show that the central temperature gradient can be tuned within a large 

range, reflected by the uniformity of temperature distributions. Meanwhile, the background 

thermal fields are not disturbed. 

 

Section S9: Effect of length scale on the metamaterial’s performance 

When discussing the effect of length scale on the metamaterial’s performance, we’d better 

ensure that all other conditions remain unchanged, especially the external temperature gradient 

settings. Under this condition, when the dimensions are increased or decreased, surrounding 

temperature data becomes further (surrounding temperature data varies within a larger range 

than the current situation, corresponding to the larger external temperature difference case), or 

closer with each other (this corresponds to the smaller external temperature difference case), 

respectively. Therefore, if the dimensions of the bilayer regions are increased (or decreased), 

these conditions can be equivalently regarded as increasing the external temperature difference 

(or decreasing) of the bilayer regions. According to the pre-trained artificial neural network, 

smaller (larger) external temperature differences bring about larger (smaller) rotating velocities, 

resulting in smaller (larger) temperature gradients in the core region. 

We further characterize the performance and verify the above analysis upon adjusting 

the systems’ dimension based on the current pre-trained artificial neural network. In our 

simulations, the dimensions of the bilayer regions are equally decreased (1/10 times), 

unchanged, and increased (10 times) with length scale 𝐿	 = 	0.02, 0.2, 2	m,  respectively. 

Further, the external temperature gradient is maintained at 100 K m-1 in three cases. External 

temperature settings are displayed in Figure S14c. Then, we extracted the temperature data 

(𝑇𝒂(5),	𝑇𝒃(5),	𝑇𝒄(5)) of N = 36 equally spaced positions in the yellow dashed circle in three cases 

(𝐿	 = 	0.02, 0.2, 2	m) of a bilayer structure. As expected, surrounding temperature data 𝑇𝒂(5) 

[	𝑇𝒄(5)] gets closer (further) with each other than the unchanged case 𝑇𝒃(5), as shown in Figure 

S14b. The relevant rotating velocities of the PDMS 𝜔. are calculated as 0.18, 0.00066, 0 rad s-

1 with respective to 𝐿	 = 	0.02, 0.2, 2	m, set in finite-element simulations. Figure S14c exhibits 

the modulated temperature profiles of the bilayer structure with different sizes 𝐿	 = 	0.02, 0.2,
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2	m, respectively. It is noted that larger (smaller) size induces the larger (smaller) external 

temperature difference, making these temperature data from 	𝑇𝒄(5) [𝑇𝒂(5)] further (closer) with 

each other. Finally, the pre-trained ANN outputs a smaller (larger) rotating velocity, generating 

a larger (smaller) temperature gradient in the core region. 
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Figure S1. Flowchart of a backpropagation algorithm for minimizing the cost of the ANN. 
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Figure S2. Hyperparameters and performance of ANN. a) Selection for hyperparameters of the 

ANN. b) The accuracy of the pre-trained ANN. c) Mean square error of the training data over 

the epoch. 
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Figure S3. Comparison between 𝑇(5)  from the pure background and 𝑇∗(5)  from bilayer 

structure. a) Schematic. b,c) N = 36 equally spaced temperature data 𝑇∗(5) [𝑇(5)] at the yellow 

dashed circle in bilayer structures (pure background) under different external temperature 

conditions and rotating velocities. 
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Figure S4. Temperature distributions on Line 1 and Line 2 of the bilayer structure (from finite-

element simulation results in Figure 2b in the main text). 
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Figure S5. Temperature-gradient distributions in the background (Inconel alloy) of the bilayer 

structure (from finite-element simulation results in Figure 2b,e,h,k in the main text). 
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Figure S6. Temperature distributions in the core region (PDMS) of the bilayer structure (from 

finite-element simulation results in Figure 2b,e,h,k in the main text). 
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Figure S7. Response of heat-enhanced thermal diffusion metamaterial under different cold 

sources. The cold source is set as 303, 293, and 283 K, respectively. The hot source is fixed at 

313 K. a) N = 36 equally spaced temperature data 𝑇𝒂(5), 𝑇𝒃(5), 𝑇𝒄(5) in the yellow dashed circle 

in static bilayer structures under three external temperature conditions. b-d) Temperature 

profiles of the bilayer structure with rotating velocity 𝜔. =  0.109, 0.00079, 0 rad s-1, 

respectively. e-g) Temperature profiles of the static pure background with the three cold sources 

(the whole bilayer structure is made of Inconel alloy). h-j) Temperature-difference profiles 

between results in (b-d) and results in (e-g). k) Original temperature-gradient distributions in 

core region Ω.  of the static pure background with the three cold sources. l) Modulated 

temperature-gradient distributions in core region Ω. of the bilayer structure with the three cold 

sources and 𝜔. = 0.109, 0.00079, 0 rad s-1, respectively. 
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Figure S8. Response of heat-enhanced thermal diffusion metamaterial under non-uniform 

external thermal fields (circle sources are set in finite-element simulations). The hot source is 

set as 293, 303, and 313 K, respectively. The cold source is fixed at 283 K. a) N = 36 equally 

spaced temperature data 𝑇𝒂(5), 𝑇𝒃(5), 𝑇𝒄(5) in the yellow dashed circle in static bilayer structures 

under three external temperature conditions. b-d) Temperature profiles of the bilayer structure 

with rotating velocity 𝜔. = 0.127, 0.00097, 0 rad s-1, respectively. e-g) Temperature profiles 

of the static pure background with the three hot sources (the whole bilayer structure is made of 

Inconel alloy). h-j) Temperature-difference profiles between results in (b-d) and results in (e-

g). k) Original temperature-gradient distributions in core region Ω.  of the static pure 

background with the three hot sources. l) Modulated temperature-gradient distributions in core 

region Ω. of the bilayer structure with the three hot sources and 𝜔. = 0.127, 0.00097, 0 rad s-

1, respectively. 
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Figure S9. Effect of non-uniform external thermal fields on the metamaterial’s performance 

(three circle sources are set randomly, with the same radii of 0.003 m). One hot source [whose 

position is at (-0.045, 0.08) m] is set as 293, 313, and 333 K, respectively. Two cold sources 

[whose positions are at (-0.06, -0.08) and (0.06, -0.06) m] are fixed at 283 K. a) Schematic. b) 

N = 36 equally spaced temperature data 𝑇𝒂(5), 𝑇𝒃(5), 𝑇𝒄(5) at the yellow dashed circle in bilayer 

structures under three external temperature conditions. c) Original (the whole bilayer structure 

is made of Inconel alloy) and modulated (rotating velocity 𝜔. =  0.13, 0.048, 0 rad s-1, 

respectively) temperature profiles of the bilayer structure with three hot source settings. d) 

Original and modulated (𝜔. =  0.13, 0.048, 0 rad s-1, respectively) temperature-gradient 

distributions in the core region Ω. of the bilayer structure with the three hot sources. 
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Figure S10. Effect of non-uniform external thermal fields on the metamaterial’s performance 

(four circle sources are set randomly, with the same radii of 0.003 m). Two hot sources [whose 

positions are at (-0.08, -0.045) and (0, -0.08) m] are set as 293, 313, and 333 K, respectively. 

Two cold sources [whose positions are at (0.045, 0.08) and (0.06, -0.06) m] are fixed at 283 K. 

a) Schematic. b) N = 36 equally spaced temperature data 𝑇𝒂(5), 𝑇𝒃(5), 𝑇𝒄(5) at the yellow dashed 

circle in bilayer structures under three external temperature conditions. c) Original (the whole 

bilayer structure is made of Inconel alloy) and modulated (rotating velocity 𝜔. = 0.138, 0.023, 

0.0004 rad s-1, respectively) temperature profiles of the bilayer structure with three hot source 

settings. Here, the circle in the core region is the modulated zone. d) Original and modulated 

(𝜔. = 0.138, 0.023, 0.0004 rad s-1, respectively) temperature-gradient distributions in the core 

region Ω. of the bilayer structure with the three hot sources. 
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Figure S11. Effect of external thermal flow’s direction on the metamaterial’s performance. a,c) 

Schematic of the heat-enhanced thermal diffusion metamaterial working under external 

temperature settings 𝑇3 = 293 and 𝑇4 	= 	283	K, while with orthogonal external temperature 

flow’s direction for (a) and (c). b,d) N = 36 equally spaced temperature data 𝑇(5) at the yellow 

dashed circle in bilayer structures under external temperature conditions of (a) and (c). Flow 

chart of e) Different temperature flow’s direction gives rise to the rotation of the temperature 

data 𝑇(5)  for the ANN, making the output 𝜔.  slightly perturbed. f) Comparison between 

modulated temperature fields when rotating velocity 𝜔. = 0.10 and 0.115 rad s-1. The ratio of 

the temperature gradient in the core region to the external counterpart |∇𝑇.|/|∇𝑇5| in two cases 

of (f) are almost the same. 
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Figure S12. Principle of the thermal signal modulator. a) Schematic of one thermal signal 

modulator. The dashed box is selected as the encoding zone, and its original temperature 

gradient is determined by external temperature settings 𝑇P and 𝑇Q. The right part is the designed 

metamaterial discussed in the main text. b) Two original and their modulated temperature 

profiles of the encoding zones at position x = 2.5 and 17.5 m. Color represents temperature 

distributions, and white lines represent the isotherms. 
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Figure S13. Effect of outer shape on the metamaterial’s performance. a) Schematic of a square 

bilayer case. b-d) Temperature profiles of the bilayer structure with rotating velocity 𝜔. = 0, 

0.00081, 0.12 rad s-1, respectively. The hot source and the cold source are set as 313 and 283 

K, respectively. Color represents temperature distributions, and white lines represent the 

isotherms. 
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Figure S14. Effect of length scale on the metamaterial’s performance. The external temperature 

gradient is maintained at 100 K m-1 in three cases. a) Schematic of the bilayer structure. b) N = 

36 equally spaced temperature data 𝑇𝒂(5), 𝑇𝒃(5), 𝑇𝒄(5) in the yellow dashed circle for three sizes 

of bilayer structures (𝐿	 = 	0.02, 0.2, 2	m, respectively). c) Temperature profiles of the bilayer 

structure with different sizes 𝐿	 = 	0.02, 0.2, 2	m,  respectively. The corresponding rotating 

velocity are 𝜔. =  0.18, 0.00066, 0 rad s-1, respectively. Color represents temperature 

distributions, and white lines represent the isotherms. Here, these dimensions of the bilayer 

regions are equally increased or decreased by 10 times, and L is like a scale bar. 
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Figure S15. Experimental setup. 
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