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Deep Learning-Assisted Active Metamaterials with
Heat-Enhanced Thermal Transport

Peng Jin, Liujun Xu, Guoqiang Xu, Jiaxin Li, Cheng-Wei Qiu,* and Jiping Huang*

Heat management is crucial for state-of-the-art applications such as passive
radiative cooling, thermally adjustable wearables, and camouflage systems.
Their adaptive versions, to cater to varied requirements, lean on the potential
of adaptive metamaterials. Existing efforts, however, feature with highly
anisotropic parameters, narrow working-temperature ranges, and the need for
manual intervention, which remain long-term and tricky obstacles for the
most advanced self-adaptive metamaterials. To surmount these barriers,
heat-enhanced thermal diffusion metamaterials powered by deep learning is
introduced. Such active metamaterials can automatically sense ambient
temperatures and swiftly, as well as continuously, adjust their thermal
functions with a high degree of tunability. They maintain robust thermal
performance even when external thermal fields change direction, and both
simulations and experiments demonstrate exceptional results. Furthermore,
two metadevices with on-demand adaptability, performing distinctive features
with isotropic materials, wide working temperatures, and spontaneous
response are designed. This work offers a framework for the design of
intelligent thermal diffusion metamaterials and can be expanded to other
diffusion fields, adapting to increasingly complex and dynamic environments.

1. Introduction

Heat management plays a crucial role in modern technology,
as efficient thermal control can substantially improve the per-
formance and longevity of electronic devices, reduce energy
consumption, and ensure the comfort and safety of users.
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In recent years, metamaterials-based
groundbreaking innovations have emerged
in the field of heat management. At a
macroscene, we observe the advancement
of passive radiative cooling systems[1] that
efficiently emit heat into space, thermally
adjustable wearable devices[2] that regulate
temperature for user comfort, and thermal
camouflage platforms[3] that adapt their
infrared signature to blend with the sur-
rounding environment. At the atomic scale,
nanophononic metamaterials utilize local
resonances, which leads to reduction in the
thermal conductivity.[4–7] In this context,
the development of advanced thermal
control techniques utilizing metamaterials
has gained increasing importance in recent
years.[8–14] Traditional metamaterials pri-
marily focused on static cases,[15–24] lacking
tunability for variable situations. To tackle
this issue, tunable metamaterials with
dynamic features have emerged, covering
optics,[25] acoustics,[26] mechanics,[27,28] and
thermotics.[29–35] For example, advanced
thermal functions have been realized,

such as macroscopic thermal diodes,[29] tunable analog ther-
mal materials,[36] path-dependent thermal devices,[37] and liquid–
solid hybrid metamaterials.[38] Additionally, adaptive thermal de-
vices are presented to maintain functionality or stability de-
pending on application scenes.[30,39–44] Despite these advance-
ments, the achievement of state-of-the-art self-adaptive ther-
mal diffusion metamaterials still faces three longstanding and
strong barriers. First, adaptive devices with robust functions
usually require extremely anisotropic parameters,[39–41,45] which
are challenging to prepare from natural bulk materials. Sec-
ond, existing adaptive devices, especially macroscopic thermal
diodes[29] and energy-free temperature trapping,[30] are lim-
ited to a specific temperature range related to the phase-
change temperature of shape memory alloys. Finally, most tun-
able or adaptive metamaterials[25,26,29–31,36–44,46] need to be ad-
justed manually rather than automatically, lacking self-cognitive
ability.

Recently, the emergence of ChatGPT[47] is a testament to the
great potential of artificial intelligence. Also, intelligent mate-
rials, involving interdisciplinary research and combining intel-
ligent algorithms with material design, have promising appli-
cations in optics,[48] nanotechnology,[49] theoretical physics,[50]

materials science,[51] and thermal science.[52] These advances
have inspired the development of ideal self-adaptive thermal
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diffusion metamaterials that fully embrace intelligence. Ideally,
these metamaterials should automatically (without human aid)
and timely adjust their dynamic components to keep function
stable or switch functions continuously in response to the broad
range of ambient temperature change. Such self-adaptive (or say,
active) thermal diffusion metamaterials would be highly desir-
able in situ scenes. However, the demanding technical perfor-
mance requires an appropriate actuation mechanism that inte-
grates an algorithm-driven intelligent system with thermal dif-
fusion metamaterial design. Although these metamaterials have
been used to design advanced self-adaptive optical cloaks in
wave systems,[53] they have failed in diffusion systems like heat
transfer due to the lack of controllable degrees of freedom. Ex-
isting machine learning-based thermal diffusion metamaterials
are dictated by the inverse design methods,[54–57] which calcu-
late the parameters of materials and sizes for desired functions.
In addition, once these metamaterials are prepared, their func-
tions are not switchable, lacking the ability to adapt to various
scenes.

Here, we introduce a deep learning-assisted intelligent sys-
tem into conventional metamaterial design. As a conceptual
implementation, we propose heat-enhanced thermal diffusion
metamaterials driven by big data. We load the pretrained ar-
tificial neural network into a hardware system and combine
it with the bilayer structure.[58] Depending on the sensing-
feedback ambient temperatures, the thermal conductivity of
a rotating component could be adjusted within a vast range,
which leads to a large-tunable temperature gradient in the tar-
get region. These results are verified by finite-element sim-
ulations and experiments. We then present two applications
with on-demand adaptability. The first application is a ther-
mal signal modulator with functional robustness, which en-
hances the clarity of original thermal signals. The second ap-
plication is an intelligent thermoelectric generator with adap-
tive functional choice, which can automatically adjust the elec-
tromotive force generated by thermoelectric materials[59] in re-
sponse to ambient temperature changes. The heat-enhanced
thermal diffusion metamaterials feature isotropic materials, un-
limited working temperatures, and cognitive responsiveness, see
Figure 1. Furthermore, we develop a handy actuation mech-
anism that integrates deep learning-driven intelligent systems
with thermal diffusion metamaterials design. This work repre-
sents a significant advancement in the design of self-adaptive
thermal diffusion metamaterials that can operate without human
intervention.

2. Architecture

The architecture of the heat-enhanced thermal diffusion meta-
material is presented in Figure 1a. It comprises four main mod-
ules: a temperature acquisition module (microinfrared camera),
a computing system with a pretrained artificial neural network
(ANN), a stepper motor, and a bilayer structure. We aim to adjust
the effective thermal conductivity of the target region based on
temperature information feedback from its surroundings. Here,
as a proof-of-concept implementation, we consider a 2D system
with a bilayer structure. The target region is the core region Ω1
consisting of poly-dimethylsiloxane (PDMS). The component of
the inner layer (Silicone pad) is approximately adiabatic for pre-
cise control of thermal fields of Ω1, and the outer layer as a
compensation layer (Magnesium alloy) is intended not to dis-
turb the thermal fields of the background (Inconel alloy). The
thermal conductivity from the inside out is 0.15, 1, 72.7, and
9.8 W m−1 K−1, respectively. After setting R1 = 30 mm and
R2 = 53 mm, R3 can be calculated as 60 mm.[58]

To characterize the temperature information of the bilayer
structure’s surroundings, we select several discrete positions
around the outer layer and measure their temperatures using
a microinfrared camera. As illustrated in Figure 1a, the yellow
dashed circle with a radius of R3 represents the selected bilayer
structure’s surroundings, and the position marked 0° denotes the
first position. Next, we record the temperature values (T1, T2, T3,
…, TN) of N equally spaced positions along the circumference in
a counterclockwise direction, serving as the input data of ANN
[denoted by T(0)].

Thanks to the tunable analog thermal material,[17,36,62] by rotat-
ing (rotating velocity: 𝜔1) the PDMS in the core region Ω1, the ef-
fective thermal conductivity of the rotating medium can be tuned
from near-zero (𝜔1 = 0) to near-infinity (larger 𝜔1). Here comes
an intuitive picture to understand this mechanism. The effec-
tive thermal conductivity of the rotating medium is derived from
the heat flow conservation equation. By incorporating the rotat-
ing convective components, such highly tunable convective heat
can be equivalently converted to the highly tunable effective ther-
mal conductivity of this medium under a limited temperature-
gradient range. On the other hand, the effective thermal conduc-
tivity of Ω1 is the crucial factor affecting the temperature-gradient
distributions of Ω1. Therefore, the core region’s temperature-
gradient distribution reflects its thermal conductivity.

To incorporate “intelligence” into the system, we utilize
an ANN to establish a relationship between the extracted

Figure 1. Architecture. a) Schematic of a deep learning-assisted active metamaterial. It comprises a microinfrared camera, a pretrained artificial neural
network, a stepper motor, and a bilayer structure. The infrared camera measures the temperature data (T1, T2, T3, …, Tn) of the bilayer structure’s
surroundings. Here, the bilayer structure consists of the inner layer (Silicone pad) and the outer layer (Magnesium alloy). The measured temperature
data is input into the pretrained artificial neural network, calculating the rotating velocity 𝜔1 of the rotating component (Poly-dimethylsiloxane) in the
core region Ω1. The stepper motor reads the rotating velocity and drives the rotating component to rotate (through the rotating disk). Finally, thermal
functions in the core region are regulated. b) Schematic of a common thermal metadevice. Shell-like metamaterial envelops a core region (labeled by
1), put in the background (labeled by 0). When external temperature settings are given (line source: hot source TH is variable; cold source TC = 283 K,
whose interval is L), metamaterial modulates the core region’s temperature fields without disturbing background’s counterparts. c) Comparison of
functionality between finite-element simulation results from previous works[58,60–61] and ours. Here, device functions are characterized by the ratio of
the temperature gradient in the core region to the external counterpart (|∇T1|/|∇T0|). The reason is that such quantity can reflect the temperature field
modulation effect of the metamaterial on the external temperature field (|∇T1|/|∇T0| < 1 for cloaking; |∇T1|/|∇T0| > 1 for concentration). The ratio
from some works is constant. To understand this, we give an intuitive explanation of its physical mechanism in Section S1, Supporting Information. In
previous works, |∇T1|/|∇T0| is stationary or discretely changeable within a limited working-temperature range. Ours is self-adaptive and tunable, working
within an unlimited temperature range.
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Figure 2. Response of the heat-enhanced thermal diffusion metamaterial in simulations. a) N = 36 equally spaced temperature data T(0)
a , T(0)

b
,

T(0)
c in the yellow dashed circle in static bilayer structures. The hot source is set as 293, 303, 313 K, respectively. The cold source is fixed at 283

K. The first data are the temperature of the position marked 0◦. Each temperature data are taken every 10◦ in the counterclockwise direction.
b) Temperature profiles of the bilayer structure with rotating velocity 𝜔1 = 0.10, 0.00 067, 0 rad s−1, respectively. Left part of c) Temperature-
gradient distributions |∇T| in core region Ω1 of static pure background with three hot sources. Right part of c) Temperature-gradient distribu-
tions |∇T| in core region Ω1 of the bilayer structure with 𝜔1 = 0.10, 0.00 067, 0 rad s−1, respectively. d–f) Same characterization with (a–c) when
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temperature information [input data: T(0)] and the rotating veloc-
ity of Ω1 (output data: 𝜔1). In Figure 1, we show the structural
component of the ANN, which is fully connected with four hid-
den layers (50 neurons per layer). The activations of all neurons
in the next layer are determined by the activations of those in the
current layer, H(i), represented by

⎧⎪⎪⎨⎪⎪⎩

H(i+1) = ReLU
[
W (i+1)T (i) + b(i+1)

]
, i = 0

H(i+1) = ReLU
[
W (i+1)H(i) + b(i+1)

]
, 0 < i < 4

ReLU (𝜔1) = ReLU
[
W (i+1)H(i) + b(i+1)

]
, i = 4

(1)

where ReLU (a) = max (0, a) is the rectified linear unit func-
tion. W and b are weights and biases for the neurons. i is
the ordinal number of layers, and i = 0 represents the input
layer.

As the ANN is a data-driven model, we prepare the dataset (Sec-
tions S2 and S3, Supporting Information). Finally, we train the
proposed ANN with selected hyperparameters using the back-
propagation algorithm to achieve optimal performance (Section
S2, Supporting Information).

Once the thermal field of the bilayer structure reaches equilib-
rium, the temperature information (T1, T2, T3, …, TN) is collected
by a microinfrared camera at a circle with a radius of R3 = 60 mm.
This array of temperature values is then input into the comput-
ing system to obtain the corresponding output signal, which is
the rotating velocity of the stepper motor, denoted as 𝜔1. Consid-
ering a case where 𝜔1 is 0 rad s−1, static PDMS possesses a ther-
mal conductivity of 0.15 W m−1 K−1, resulting in the maximum
temperature gradient in Ω1.

The middle left inset of Figure 1a represents a schematic
of a potential intelligent heat dissipation material arranged by
the heat-enhanced metamaterials, and color denotes temperature
distributions within a range from the lowest Tlow to the high-
est Thigh temperature. More uniform surrounding temperatures
(hot end) result in higher thermal conductivity, determined by
the pretrained ANN. The principle is that a smaller (larger) ex-
ternal temperature gradient brings about larger (smaller) rotat-
ing velocities of the core region, resulting in a smaller (larger)
temperature gradient in the core region. When the bilayer struc-
ture is under a smaller external temperature gradient (which
means more uniform surrounding temperatures), it brings about
larger rotating velocities, leading to higher effective thermal
conductivity.

3. Omnidirectional Response in Simulations

Finite-element simulations are first employed to evaluate the
performance of the heat-enhanced thermal diffusion metama-
terial. For proof-of-concept verification, we consider a 2D bi-
layer structure whose components and sizes are the same as
described earlier. The system’s left (right) end connects to a

hot (cold) source. In our simulations, the cold source (TC =
283 K) is fixed, while the hot source (TH) is varied. We first
collect the temperature data [T (0)

a , T (0)
b , T (0)

c ] of N = 36 equally
spaced positions in the yellow dashed circle in three cases (TH
= 293, 303, 313 K) of a static bilayer structure, as shown in
Figure 2a. Here, “static bilayer structure” means that the core
region is not rotating as an initial state of the active meta-
material. For each case, the first data are the temperature of
the position marked 0° in the dashed circle, and the temper-
ature of these positions is collected in counterclockwise order,
serving as the input layer of the pretrained ANN. Hence, via
the pretrained ANN, the rotating velocity 𝜔1 of PDMS is cal-
culated as 0.10, 0.00 067, and 0 rad s−1 for the three temper-
ature settings, respectively. After setting the above parameters
(TH and 𝜔1) in finite-element simulations, we show these three
temperature profiles (color distributions) of the bilayer structure;
see Figure 2b. No matter how the rotating velocity 𝜔1 of PDMS
changes, the temperature distributions of the background re-
main unaffected (Section S4, Supporting Information). Finally,
the corresponding temperature-gradient distributions in Ω1 are
presented in the right part of Figure 2c. For comparison, we show
the temperature-gradient distributions in Ω1 of pure background
(size: 200 × 200 mm2) with three hot sources; see left part of
Figure 2c. As anticipated, there is a mapping relationship be-
tween the lowest/highest TH − TC and the highest/lowest ro-
tating velocity 𝜔1 (or, equivalently, the highest/lowest effective
thermal conductivity in Ω1) in the above scheme. Furthermore,
the range of the originally external temperature-gradient field
[(TH − TC)/L : 50 to 150 K m−1] can be adjusted to a wider range
of temperature gradient (|∇T|: 0 to 238.5 K m−1) in the target
region Ω1.

In the actual scene, we are unsure in which direction the ex-
ternal thermal field is exerted on the bilayer structure. Therefore,
we should ensure that the above thermal performance remains
unaffected by changes in the external thermal field’s direction.
In particular, we guarantee the hot and cold sources consistent
with the above and rotate them 30°, 60°, and 90° around the cen-
ter of the bilayer structure. Apparently, temperature distributions
in the yellow dashed circle is different from each other when
rotating the same TH and TC; see T(0), T′(0), T′′(0), and T′′′(0) in
Figure 2a,d,g,j. Subsequently, we calculate the rotating velocity𝜔1
in cases with TH = 293, 303, 313 K in the above four directions us-
ing the pretrained ANN and perform finite-element simulations.
Finally, Figure 2c,f,i,l confirm that the heat-enhanced metama-
terial has good robustness to changes in the external thermal
flow’s direction. Such intelligent metamaterial also maintains
functional stability under different cold sources and nonuni-
form external thermal fields (Section S5, Supporting Informa-
tion). In addition, the calculated 𝜔1 from pretrained ANN is al-
most consistent with the set 𝜔1,Target when external hot and cold
sources are given, as shown in Figure 2m–o. In Section S6, Sup-
porting Information, we discuss the weak direction-dependence
of the metamaterial’s performance (reflected by calculated 𝜔1)

the external thermal field rotates 30◦ around the center of the bilayer structure in the counterclockwise direction. g–i) Same characterization with
a–c) when the external thermal field rotates 60◦ around the center of the bilayer structure in the counterclockwise direction. j–l) Same charac-
terization with a–c) when the external thermal field rotates 90◦ around the center of the bilayer structure in the counterclockwise direction. m–
o) Comparison of calculated 𝜔1 and targeted 𝜔1,Target in above four directions of the external thermal field in cases with TH = 293, 303, 313 K,
respectively.
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Figure 3. Realization of the heat-enhanced thermal diffusion metamaterial. a,c,e) Experimental temperature data T(0)
a , T(0)

b
, T(0)

c in the dashed circle with
radius R3 = 60 mm, marked in (b,d,f) when hot bath is set to 293, 303, 313 K, respectively. The cold bath is fixed to 283 K. b,d,f) Measured temperature
profile of the bilayer structure with rotating velocity 𝜔1 = 0.118, 0.0007, 0 rad s−1, respectively. g) Calculated temperature-gradient distributions |∇T| in
core region Ω1 of the bilayer structure with 𝜔1 = 0.118, 0.0007, 0 rad s−1, respectively.

even though it comprises isotropic materials with isotropic
geometry.

4. Experimental Measurements

To evaluate the performance, we initially set the temperatures of
the hot and cold baths to 293 and 283 K, respectively. After start-
ing the heat-enhanced metamaterial, it measures the tempera-
ture data T (0)

a , and using a pretrained ANN, it calculates the ro-
tating velocity 𝜔1 of PDMS, which is found to be 0.118 rad s−1

(refer to Figure 3a). Further, Figure 3b shows the temperature
profile of the bilayer structure recorded by an infrared camera
Fotric 430. Note that in the core region, the temperature distri-
bution is uniform, and in the background region, the tempera-
ture field is nearly undistorted. Subsequently, we fix the temper-
ature of the cold bath to 283 K and change the temperature of the
hot bath to 303 K. The measured temperature data T (0)

b and the
calculated 𝜔1 = 0.0007 rad s−1 are shown in Figure 3c. The tem-
perature profile of the bilayer structure is presented in Figure 3d,
where the uniformity of the temperature distribution in the core
region is slightly broken, while the background temperature field
is still undisturbed. Finally, with the same cold bath, we increase
the temperature of the hot bath to 313 K, and read the temper-
ature data T (0)

c , see Figure 3e. As anticipated, the calculated 𝜔1
is 0 rad s−1. We then obtain the temperature profile of the bi-
layer structure (Figure 3f), where we observe that the tempera-
ture distribution in the core region is maximally nonuniform,
without significantly disturbing the background thermal field.
Above temperature data T (0)

a , T (0)
b , and T (0)

c , the relevant rotating
velocity 𝜔1, and their temperature profiles of the bilayer structure

are consistent with the simulation results. For quantitative anal-
ysis, we use the central difference method to process the discrete
temperature data in Figure 3b,d,f and obtain these temperature-
gradient distributions in the core region (see Figure 3g), which is
in good agreement with the simulation results in the right part
of Figure 2c. As a result, we successfully manipulate the core re-
gion’s temperature gradient in the bilayer structure (or, equiv-
alently, the effective thermal conductivity in Ω1), based on the
feedback of temperature information T(0) from its surroundings.

5. Heat-Enhanced Thermal Signal Modulator

We have developed a thermal signal modulator that utilizes the
heat-enhanced thermal diffusion metamaterial for heat commu-
nications. Previous work adopted binary thermal spatial coding to
store information in thermal signals.[63] Binary 0 and 1 are repre-
sented by encoding the temperature gradient in the working zone
of the cloaking and concentration with core–shell structures,
where the core region is the working zone. For thermal cloaking
(concentration), there is a minimum (maximum) temperature-
gradient distribution in the working zone. Via the continuous ar-
rangement of cloaking or concentration devices, thermal signals
could be stored and characterized by the temperature-gradient
distributions in the working zones of the arranged metadevices.
However, binary encoding is inefficient for information stor-
age. Instead, thermal signals should oscillate with space in a
continuous mode to transmit more encoding information si-
multaneously in heat communications. Nevertheless, the adop-
tion of continuous encoding can result in original thermal sig-
nals being easily disturbed, with oscillations limited to smaller
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Figure 4. Heat-enhanced thermal diffusion metamaterial for robust modulation of thermal signals. a) Schematic of the thermal signal modulator.
b) Comparison of modulated and original thermal signals. Modulated (original) thermal signals are denoted by distributions of averaged temperature
gradients in the modulated zones of the modulators (only external thermal fields) across the x direction. Each x coordinate represents the central position
of each modulator. c) Simulated temperature profiles of several modulators and their external thermal fields placed at x = 2.5, 17.5, 35, and 47.5 m,
respectively.

amplitudes due to thermal dissipation and thermal noise. Our
proposed thermal signal modulator can re-modulate original dis-
turbed thermal signals to oscillate with space in a larger am-
plitude, see the schematic in Figure 4a. To create an encoding
zone, we select a square area (see the dashed box marked in
Figure 4a) in the working zone of devices that is consistent with
the size of the heat-enhanced thermal diffusion metamaterial. To
ensure the temperature field in the working zone of the device is
not disturbed, we make the effective thermal conductivity inside
and outside the encoding zone consistent. We consider the orig-
inal temperature gradient in the encoding zone as the external
thermal field of the heat-enhanced metamaterial. In our simula-
tions, external thermal fields |∇T| vary from (TH,min − TC)/L = 50
to (TH,max − TC)/L = 150 K m−1. Here, TH,max (TH,min) represents
the highest (lowest) temperature in encoding zone. L is the side
length of the encoding zone. Through the heat-enhanced thermal
diffusion metamaterial, the average temperature gradient of the
modulated zone (Ω1; see round dashed line marked in Figure 4a)
could be ranged from 0 to 238.5 K m−1. We obtain a linear
transformation relationship between the original temperature-
gradient range and modulated temperature-gradient range.

We consider the oscillation of original thermal signals driven
by variable hot sources across the x direction in the sinusoidal
law sin 2𝜋x/𝜆, and apply the linear transformation to the orig-
inal thermal signals to get the modulated thermal signals, see
Figure 4b. We take 𝜆 as 10 m, and arrange 50 modulators (each
size: 0.2 × 0.2 m2) in each range of 𝜆. Here, 𝜆 is the wavelength
of sinusoidal thermal signals oscillating with space. Figure 4c
shows the temperature profiles of several modulators and their
original external thermal fields placed at x = 2.5, 17.5, 35, and
47.5 m (from finite-element simulations), respectively. Here,
each x coordinate represents the central position of each mod-

ulator. We mark the original (modulated) temperature gradient
values in the encoding (modulated) zone of several modulators;
see Figure 4c. Overall, heat-enhanced thermal signal modulator
preserves the relative strength relationship between the original
signals while making the difference between the original sig-
nals more obvious. In Section S7, Supporting Information, we
provide the mechanism of how one thermal signal modulator
works.

6. Thermoelectric Generator

In our experiment, we adjust the rotating velocity𝜔1 of the PDMS
in the core region based on the feedback of temperature infor-
mation T(0) of the bilayer structure’s outer layer, as shown in
Figure 5a. This leads to a large temperature-gradient tunability in
the bilayer structure’s core region. Here, by the grace of these re-
sults, we propose a potential application of a heat-enhanced ther-
mal diffusion metamaterial for thermoelectric generation (or, say,
an intelligent thermoelectric generator), whose schematic dia-
gram is shown in Figure 5b. We perform finite-element simu-
lations to demonstrate the properties of the intelligent thermo-
electric generator. In the following simulations, the components,
sizes, and boundary conditions of the bilayer structure are set
to be consistent with those in the experiment. Then, we place
a cylindrical thermoelectric material Bi2Te3 (thermal and elec-
trical conductivity 𝜅 = 1.6 W m−1 K−1 and 𝜎 = 8700 S m−1,
Seebeck coefficient S = 0.2 mV K−1) with a diameter and thick-
ness of 30 and 2 mm in the center of the PDMS. Bi2Te3 contacts
with the upper surface of the PDMS. Due to the thermal con-
ductivity mismatch between Bi2Te3 and PDMS, the existence of
Bi2Te3 disturbs the original temperature distributions in the core
region of the bilayer structure. To mitigate this issue, we punch a
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Figure 5. Heat-enhanced thermal diffusion metamaterial for a thermoelectric generator. a) Mapping relationship between input data T(0) and output
data 𝜔1 of the intelligent metadevice from the experimental results. b) Schematic of the thermoelectric generator. c,f,i) Temperature profiles (color) of
the thermoelectric generator with PDMS’s rotating velocity 𝜔1 = 0, 0.0007, 0.118 rad s−1, respectively. Black lines represent isotherms. d,g,j) Electric
potential profiles (color) of the thermoelectric generator with 𝜔1 = 0, 0.0007, 0.118 rad s−1, respectively. e,h,k) Electric potential distributions of the
upper surface of the thermoelectric generator with 𝜔1 = 0, 0.0007, 0.118 rad s−1, respectively.

series of hollow air holes with a diameter of 2 mm on Bi2Te3 to
make the thermal conductivity of the two materials closer. The
cold source is fixed at 283 K, and the hot source is set at 313,
303, and 293 K, respectively. The corresponding 𝜔1 values are 0,
0.0007, and 0.118 rad s−1, with the same conditions in the exper-
iment. Figure 5c,f,i shows the temperature profiles of the intel-
ligent thermoelectric generator under the three simulation con-
ditions. Note that the isotherms on the surface of Bi2Te3 become

sparser and sparser with an increase in 𝜔1, which indicates the
existence of Bi2Te3 has little influence on the original tempera-
ture gradient in the core region. Next, we simulate the electric
potential profiles of Bi2Te3 under the three temperature distri-
butions in Figure 5c,f,i, as shown in Figure 5d,g,j. See concrete
electric potential data of Figure 5d,g,j in Figure 5e,h,k, and the rel-
evant maximum potential difference ΔU = Umax − Umin is 4.03
× 10−4, 2.58 × 10−4, and 2.05 × 10−9 V, respectively. Finally, we

Adv. Mater. 2024, 36, 2305791 © 2023 Wiley-VCH GmbH2305791 (8 of 10)
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realize the intelligent thermoelectric generator to adjust the out-
put electromotive force adaptively under different temperature
environments. For example, a relatively high ambient tempera-
ture difference makes the 𝜔1 of PDMS in the core region zero.
In this case, the temperature gradient in the core region is the
largest. With the aid of Bi2Te3, the largest electromotive force dif-
ference could be generated. Interestingly, the electromotive force
could drive an external cooling load, and its tunability leads to
regulation of the cooling power of the load, achieving the effect
of feedback regulation of the ambient temperature.

7. Conclusion

To sum up, we propose heat-enhanced thermal diffusion meta-
materials, driven by a deep-learning algorithm that requires no
manual intervention. As a conceptual verification, we demon-
strate the intelligent adjustment of the effective thermal conduc-
tivity of the rotating component [made of poly-dimethylsiloxane
(PDMS)] of a bilayer structure, based on the ambient tempera-
ture using a pretrained artificial neural network (ANN). For algo-
rithm implementation, we use the temperatures at discrete posi-
tions on the outer contour of the bilayer structure (ambient tem-
perature) as input data. Then, the pretrained ANN outputs the
PDMS’s rotating velocity (𝜔1), which adjusts its effective thermal
conductivity and, thus, the temperature-gradient distribution in
the core region. For hardware implementation, we integrate the
pretrained ANN into a Raspberry Pi microcomputer. One end
is connected to a micro infrared camera to detect the ambient
temperature for the input data, and the other is connected to a
stepper-motor driver to control the 𝜔1 of the motor, rotating the
PDMS. Finite-element simulations and experiments confirm the
effectiveness of this heat-enhanced thermal diffusion metamate-
rial, which is robust to the direction of external thermal fields. In
Sections S8 and S9, Supporting Information, we discuss the ef-
fect of shape and length scale on the metamaterial’s performance,
respectively.

Incidentally, self-adaptive or active devices can be applied in
two typical scenarios. The first involves a device that maintains
stable function in a changeable environment, like the thermal
signal modulator we designed. The second scenario involves a
device that can intelligently choose its function based on changes
in its environment. To demonstrate this, we designed an intelli-
gent thermoelectric generator that can adjust its function in re-
sponse to a changeable environment. The adjustable tempera-
ture gradient in the core region enables thermoelectric materi-
als like Bi2Te3 to generate tunable electromotive force, as veri-
fied by finite-element simulations. Finally, we have shown that
metamaterials can have the ability to perceive their environ-
ment deeply. Not only that, drawing parallels from nonlinear
optics,[64] our work results in material’s effective thermal con-
ductivity being responsive to external temperature gradients, lay-
ing the foundation for a configurable nonlinear thermal material.
The proposed concept combines diverse domains, such as artifi-
cial intelligence, metamaterials, energy utilization, heat commu-
nications, and thermal management. The presented interdisci-
plinary work promises to provide new inspiration for progress in
various areas, for example, intelligent thermal management in
chips.

8. Experimental Section
The heat-enhanced metamaterial comprises four main parts: a microin-

frared camera, a computing system equipped with a pretrained artificial
neural network (ANN), a stepper motor, and a bilayer structure; see the ex-
perimental setup in Figure S15, Supporting Information. The bilayer struc-
ture, with a 2 mm thickness, is connected to hot and cold containers on
either side, serving as heat baths. Its components and sizes are the same
as those used in the simulations. The microinfrared camera is controlled
by the computing system. Every time the infrared camera is started, it mea-
sures the temperature distribution of the bilayer structure and transmits
the temperature data to the computing system. The computing system
consists of power, a microcomputer Raspberry Pi, a power supply of motor
driver, and a motor driver. A pretrained ANN program runs in the Rasp-
berry Pi. The input data T(0) is from the temperature data measured by the
micro infrared camera. After the program processing, the computing sys-
tem extracts the temperature data of the bilayer structure’s surroundings,
provided to the input layer T(0) of ANN. When reading the input data T(0),
the pre-trained ANN program in the computing system calculates the ro-
tating velocity 𝜔1 of PDMS in the core region Ω1 of the bilayer structure.
The corresponding signal of controlling 𝜔1 is transmitted to the stepper
motor via the motor driver. Finally, the PDMS rotates around the center of
the bilayer structure, driven by the stepper motor, thereby regulating the
effective thermal conductivity of Ω1.
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Supporting Information is available from the Wiley Online Library or from
the author.
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