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Part I: Comparison between the imitated and realistic advection 

The imitated advection 

We consider a steady case with forward heat transfer (Fig. S1a) by setting a high 

temperature of 𝑇𝑇ℎ  at 𝑥𝑥/𝐿𝐿 = 0  and a low temperature of 𝑇𝑇𝑐𝑐  at 𝑥𝑥/𝐿𝐿 = 1 . The governing 

equation of heat transfer in a graded heat-conduction metadevice is 

 𝜌𝜌(𝑥𝑥)𝐶𝐶(𝑥𝑥) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
�−𝜅𝜅(𝑥𝑥) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = 0, (S1) 

with parameters of 𝜅𝜅(𝑥𝑥) = 𝜅𝜅0𝑒𝑒𝛼𝛼𝛼𝛼  and 𝜌𝜌(𝑥𝑥)𝐶𝐶(𝑥𝑥) = 𝜌𝜌0𝐶𝐶0𝑒𝑒𝛼𝛼𝛼𝛼 . The substitution of a trial 

solution described by 𝑇𝑇𝑓𝑓 = 𝐴𝐴𝑓𝑓𝑒𝑒𝛾𝛾𝛾𝛾 + 𝐵𝐵𝑓𝑓   into Eq. (S1) yields 𝛾𝛾 = −𝛼𝛼 . Considering the 

boundary conditions of 𝑇𝑇𝑓𝑓(𝑥𝑥/𝐿𝐿 = 0) = 𝑇𝑇ℎ  and 𝑇𝑇𝑓𝑓(𝑥𝑥/𝐿𝐿 = 1) = 𝑇𝑇𝑐𝑐 , we derive 𝐴𝐴𝑓𝑓 = (𝑇𝑇ℎ −

𝑇𝑇𝑐𝑐)/(1 − 𝑒𝑒−𝛼𝛼𝛼𝛼) and 𝐵𝐵𝑓𝑓 = (𝑇𝑇𝑐𝑐 − 𝑇𝑇ℎ𝑒𝑒−𝛼𝛼𝛼𝛼)/(1 − 𝑒𝑒−𝛼𝛼𝛼𝛼). For a steady case with backward heat 

transfer, the corresponding temperature of 𝑇𝑇𝑏𝑏  satisfies 𝑇𝑇𝑏𝑏(𝑥𝑥/𝐿𝐿 = 0) = 𝑇𝑇𝑐𝑐  and 𝑇𝑇𝑏𝑏(𝑥𝑥/𝐿𝐿 =

1) = 𝑇𝑇ℎ. Therefore, 𝑇𝑇𝑓𝑓 and 𝑇𝑇𝑏𝑏 can be summarized as 

 𝑇𝑇𝑓𝑓 = (𝑇𝑇ℎ−𝑇𝑇𝑐𝑐)𝑒𝑒−𝛼𝛼𝛼𝛼

1− 𝑒𝑒−𝛼𝛼𝛼𝛼
+ 𝑇𝑇𝑐𝑐−𝑇𝑇ℎ𝑒𝑒−𝛼𝛼𝛼𝛼

1− 𝑒𝑒−𝛼𝛼𝛼𝛼
, (S2a) 

 𝑇𝑇𝑏𝑏 = (𝑇𝑇𝑐𝑐−𝑇𝑇ℎ)𝑒𝑒−𝛼𝛼𝛼𝛼

1− 𝑒𝑒−𝛼𝛼𝛼𝛼
+ 𝑇𝑇ℎ−𝑇𝑇𝑐𝑐𝑒𝑒−𝛼𝛼𝛼𝛼

1− 𝑒𝑒−𝛼𝛼𝛼𝛼
. (S2b) 

We calculate the temperature at 𝑥𝑥/𝐿𝐿 = 0.5  from Eqs. (S2a) and (S2b). Due to 𝑇𝑇𝑓𝑓(𝑥𝑥/𝐿𝐿 =

0.5) ≠ 𝑇𝑇𝑏𝑏(𝑥𝑥/𝐿𝐿 = 0.5) , the temperature distributions are asymmetric in opposite directions, 

resulting from the imitated advection. 

We also consider a transient case with forward heat transfer (Fig. S1c) by applying a time-

periodic temperature of 𝑇𝑇𝑝𝑝 = 𝐴𝐴0𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑇𝑇0 at 𝑥𝑥/𝐿𝐿 = 0, where 𝜔𝜔 is the angular frequency. 

The imaginary unit is denoted by 𝑖𝑖 = √−1, and the real part of 𝑇𝑇𝑝𝑝 makes sense. The right 

boundary is set with the open condition. We discuss a wavelike temperature solution described 

by 𝑇𝑇𝑓𝑓 = 𝐴𝐴0𝑒𝑒𝑖𝑖�𝛽𝛽𝑓𝑓𝑥𝑥−𝜔𝜔𝜔𝜔� + 𝑇𝑇0 , where 𝛽𝛽𝑓𝑓  is the forward wave number. Since heat conduction 
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features dissipation, 𝛽𝛽𝑓𝑓 is a complex number whose imaginary part denotes the spatial decay 

rate. We substitute the wavelike solution into Eq. (S1) and derive Re�𝛽𝛽𝑓𝑓� = √2𝜀𝜀/4  and 

Im�𝛽𝛽𝑓𝑓� = �8𝛼𝛼𝛼𝛼 + 2√2𝛼𝛼2𝐷𝐷0𝜀𝜀 + √2𝐷𝐷0𝜀𝜀3�/(16𝜔𝜔)  with 𝜀𝜀 = �−𝛼𝛼2 + �𝛼𝛼4 + 16𝜔𝜔2/𝐷𝐷02 . 

The method also applies to a transient case with backward heat transfer, corresponding to a 

temperature profile of 𝑇𝑇𝑏𝑏. Therefore, 𝑇𝑇𝑓𝑓 and 𝑇𝑇𝑏𝑏 can be rewritten as 

 𝑇𝑇𝑓𝑓 = 𝐴𝐴0𝑒𝑒𝑖𝑖�𝛽𝛽𝑓𝑓𝑥𝑥−𝜔𝜔𝜔𝜔� + 𝑇𝑇0 = 𝐴𝐴0𝑒𝑒−Im�𝛽𝛽𝑓𝑓�𝑥𝑥𝑒𝑒𝑖𝑖�Re�𝛽𝛽𝑓𝑓�𝑥𝑥−𝜔𝜔𝜔𝜔� + 𝑇𝑇0, (S3a) 

 𝑇𝑇𝑏𝑏 = 𝐴𝐴0𝑒𝑒𝑖𝑖(𝛽𝛽𝑏𝑏𝑥̅𝑥−𝜔𝜔𝜔𝜔) + 𝑇𝑇0 = 𝐴𝐴0𝑒𝑒−Im(𝛽𝛽𝑏𝑏)𝑥̅𝑥𝑒𝑒𝑖𝑖(Re(𝛽𝛽𝑏𝑏)𝑥̅𝑥−𝜔𝜔𝜔𝜔) + 𝑇𝑇0, (S3b) 

with a definition of 𝑥̅𝑥 = 𝑥𝑥 − 𝐿𝐿. The parameters of 𝛽𝛽𝑓𝑓 and 𝛽𝛽𝑏𝑏 satisfies 

 𝛽𝛽𝑓𝑓 = √2𝜀𝜀
4

+ 𝑖𝑖 8𝛼𝛼𝛼𝛼+2√2𝛼𝛼
2𝐷𝐷0𝜀𝜀+√2𝐷𝐷0𝜀𝜀3

16𝜔𝜔
, (S4a) 

 𝛽𝛽𝑏𝑏 = −√2𝜀𝜀
4

+ 𝑖𝑖 8𝛼𝛼𝛼𝛼−2√2𝛼𝛼
2𝐷𝐷0𝜀𝜀−√2𝐷𝐷0𝜀𝜀3

16𝜔𝜔
. (S4b) 

Due to �Im�𝛽𝛽𝑓𝑓�� ≠ |Im(𝛽𝛽𝑏𝑏)| (i.e., different spatial decay rates), the temperature profiles are 

asymmetric in opposite directions, resulting from the imitated advection. Therefore, the 

imitated advection can lead to asymmetric heat transfer in steady and transient states. 

The realistic advection 

Heat transfer with diffusion and advection is described by 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐷𝐷0

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2

= 0, (S5) 

where 𝑣𝑣0 is the advection velocity and 𝐷𝐷0 = 𝜅𝜅0/(𝜌𝜌0𝐶𝐶0) is the thermal diffusivity. We discuss 

steady heat transfer and derive the forward and backward temperature distributions, 

 𝑇𝑇𝑓𝑓 = (𝑇𝑇ℎ−𝑇𝑇𝑐𝑐)𝑒𝑒𝑣𝑣0𝑥𝑥/𝐷𝐷0

1− 𝑒𝑒𝑣𝑣0𝐿𝐿/𝐷𝐷0
+ 𝑇𝑇𝑐𝑐−𝑇𝑇ℎ𝑒𝑒𝑣𝑣0𝐿𝐿/𝐷𝐷0

1− 𝑒𝑒𝑣𝑣0𝐿𝐿/𝐷𝐷0
, (S6a) 

 𝑇𝑇𝑏𝑏 = (𝑇𝑇𝑐𝑐−𝑇𝑇ℎ)𝑒𝑒𝑣𝑣0𝑥𝑥/𝐷𝐷0

1− 𝑒𝑒𝑣𝑣0𝐿𝐿/𝐷𝐷0
+ 𝑇𝑇ℎ−𝑇𝑇𝑐𝑐𝑒𝑒𝑣𝑣0𝐿𝐿/𝐷𝐷0

1− 𝑒𝑒𝑣𝑣0𝐿𝐿/𝐷𝐷0
. (S6b) 

We further consider transient heat transfer, and the forward and backward wave numbers can 

be expressed as 
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 𝛽𝛽𝑓𝑓 = √2𝜀𝜀
4

+ 𝑖𝑖 −8𝑣𝑣0𝜔𝜔+2√2𝑣𝑣0
2𝜀𝜀+√2𝐷𝐷02𝜀𝜀3

16𝜔𝜔𝐷𝐷0
, (S7a) 

 𝛽𝛽𝑏𝑏 = −√2𝜀𝜀
4

+ 𝑖𝑖 −8𝑣𝑣0𝜔𝜔−2√2𝑣𝑣0
2𝜀𝜀−√2𝐷𝐷02𝜀𝜀3

16𝜔𝜔𝐷𝐷0
, (S7b) 

with a definition of 𝜀𝜀 = �−𝑣𝑣02/𝐷𝐷02 + �𝑣𝑣04/𝐷𝐷04 + 16𝜔𝜔2/𝐷𝐷02. Therefore, when the requirement 

of 𝑣𝑣0 = −𝛼𝛼𝐷𝐷0  is satisfied, the imitated and realistic advection demonstrates a similar 

temperature field effect in steady and transient states. 

To confirm these theoretical analyses, we perform finite-element simulations with two 

templates of COMSOL Multiphysics, i.e., heat transfer in solids and heat transfer in fluids. The 

requirement of 𝑣𝑣0 = −𝛼𝛼𝐷𝐷0 is always satisfied. The steady results of the imitated advection 

are presented with solid lines, and those of the realistic advection are displayed with dotted 

lines (Fig. S1b). The transient results are shown in Fig. S1d. There is no temperature difference 

between the imitated and realistic advection. Meanwhile, the imitated advection can also lead 

to asymmetric heat transfer in steady and transient cases, just like the realistic advection. In 

other words, in terms of the temperature field effect, the imitated advection in graded heat-

conduction metadevices is similar to the realistic advection induced by mass transfer. 

Consequently, graded heat-conduction metadevices can help reveal those advection-required 

phenomena and applications in completely stationary solids without external drives. 

Part II: Thermal trapping in one dimension 

Graded metadevices have broad applications for wave control. A typical example is 

focusing waves by a slab lens (Fig. S2a). The underlying mechanism is that the graded 

refractive index can produce an effective momentum. Similarly, since graded heat-conduction 

metadevices can generate the imitated advection, thermal trapping can also be expected to move 

hot spots flexibly and trap them elsewhere (Fig. S2b). 
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When a Gaussian wave packet is in the left part of the system (Fig. S2c1), we can design 

a graded heat-conduction metadevice with opposite imitated advection to trap the wave packet 

towards the central interface (Fig. S2c2 and c3). The quantitative data are also presented in Fig. 

S2d. We also plot the temperature evolution in a homogeneous material for reference (Fig. S2e). 

The hot spot is trapped in the graded heat-conduction metadevice but keeps almost stationary 

in the homogeneous material. Meanwhile, the temperature field amplitude decreases because 

heat conduction corresponds to dissipation. This design conveniently manipulates temperature 

profiles in completely stationary solids because energy-consuming external drives are no longer 

required. Such a one-dimensional case also lays a solid foundation for designing thermal 

trapping in high dimensions. 

Part III: The imitated advection in high dimensions 

Two dimensions 

We consider a diffusion-advection process dominated by 

 𝜌𝜌0𝐶𝐶0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛁𝛁 ⋅ (𝜌𝜌0𝐶𝐶0𝒗𝒗0𝑇𝑇 − 𝜅𝜅0𝛁𝛁𝑇𝑇) = 0. (S8) 

Mass conservation yields 𝛁𝛁 ⋅ (𝜌𝜌0𝒗𝒗0) = 0 and further leads to 𝛁𝛁 ⋅ 𝒗𝒗0 = 0 due to the constant 

value of 𝜌𝜌0. Therefore, Eq. (S8) can be rewritten as 

 𝜌𝜌0𝐶𝐶0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜌𝜌0𝐶𝐶0𝒗𝒗0 ⋅ 𝛁𝛁𝑇𝑇 + 𝛁𝛁 ⋅ (−𝜅𝜅0𝛁𝛁𝑇𝑇) = 0. (S9) 

For two dimensions with cylindrical coordinates of (𝑟𝑟,𝜃𝜃), Eq. (S9) can be reduced to 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐷𝐷0 �

1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�� = 0, (S10) 

where 𝑣𝑣0  is along the radial direction and ∂𝑇𝑇/ ∂𝜃𝜃 = 0 . The realistic advection term is 

𝑣𝑣0𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 in Eq. (S10). The imitated advection term also appears if we reduce Eq. (S10) to 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐷𝐷0

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐷𝐷0

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑟𝑟2

= 0, (S11) 
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where −𝐷𝐷0𝜕𝜕𝜕𝜕/(𝑟𝑟𝑟𝑟𝑟𝑟)  is the imitated advection term and −𝐷𝐷0/𝑟𝑟  is the imitated advection 

velocity. However, −𝐷𝐷0𝜕𝜕𝜕𝜕/(𝑟𝑟𝑟𝑟𝑟𝑟) essentially results from the cylindrical coordinate system, 

which is not our interest. We aim to realize 𝑣𝑣0𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕  with graded parameters. For this 

purpose, we consider the parameters have radial variations, 

 𝜅𝜅(𝑟𝑟) = 𝜅𝜅0𝑒𝑒𝛼𝛼𝛼𝛼, (S12a) 

 𝜌𝜌(𝑟𝑟)𝐶𝐶(𝑟𝑟) = 𝜌𝜌0𝐶𝐶0𝑒𝑒𝛼𝛼𝛼𝛼. (S12b) 

Then we substitute Eqs. (S12a) and (S12b) into the governing equation of heat conduction, 

 𝜌𝜌(𝑟𝑟)𝐶𝐶(𝑟𝑟) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�−𝑟𝑟𝑟𝑟(𝑟𝑟) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = 0. (S13) 

We further reduce Eq. (S13) to 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑖𝑖0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐷𝐷0

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐷𝐷0

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑟𝑟2

= 0, (S14) 

with a definition of 𝑣𝑣𝑖𝑖0 = −𝛼𝛼𝐷𝐷0. Since Eqs. (S14) and (S11) share the same equation forms, 

the imitated advection can be achieved with graded parameters in two dimensions. 

Three dimensions 

We consider a three-dimensional case with spherical coordinates (𝑟𝑟,𝜃𝜃,𝜑𝜑), and Eq. (S9) 

can be simplified as 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐷𝐷0 �

1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟2 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�� = 0, (S15) 

where 𝑣𝑣0 is also along the radial direction and ∂𝑇𝑇/ ∂𝜃𝜃 = ∂𝑇𝑇/ ∂𝜑𝜑 = 0. Similar to the above 

two dimensions, besides the realistic advection term of 𝑣𝑣0𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕, the imitated advection term 

also appears if we simplify Eq. (S15) as 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 2𝐷𝐷0

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐷𝐷0

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑟𝑟2

= 0, (S16) 

where −2𝐷𝐷0𝜕𝜕𝜕𝜕/(𝑟𝑟𝑟𝑟𝑟𝑟) is the imitated advection term. We also consider graded parameters 

with radial distributions, 
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 𝜅𝜅(𝑟𝑟) = 𝜅𝜅0𝑒𝑒𝛼𝛼𝛼𝛼, (S17a) 

 𝜌𝜌(𝑟𝑟)𝐶𝐶(𝑟𝑟) = 𝜌𝜌0𝐶𝐶0𝑒𝑒𝛼𝛼𝛼𝛼. (S17b) 

With Eqs. (S17a) and (S17b), the governing equation of heat conduction becomes 

 𝜌𝜌(𝑟𝑟)𝐶𝐶(𝑟𝑟) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝜕𝜕
�−𝑟𝑟2𝜅𝜅(𝑟𝑟) 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = 0. (S18) 

Then Eq. (S18) can be simplified as 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑖𝑖0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 2𝐷𝐷0

𝑟𝑟
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝐷𝐷0

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑟𝑟2

= 0, (S19) 

with a definition of 𝑣𝑣𝑖𝑖0 = −𝛼𝛼𝐷𝐷0 . Therefore, the imitated advection of our concern is also 

obtained in three dimensions. 

Therefore, the exponential forms of thermal conductivity and the product of mass density 

and heat capacity work in one, two, and three dimensions and generate a constant imitated 

advection velocity of 𝑣𝑣𝑖𝑖0 = −𝛼𝛼𝐷𝐷0 . The exponential forms are not mandatory as long as 

𝜕𝜕𝜕𝜕(𝑟𝑟)/𝜕𝜕𝜕𝜕 ≠ 0 because the imitated advection results from graded thermal conductivities. 

Part IV: Relation between graded parameters and curvilinear spacetime 

The transformation theory [1-5] suggests that graded parameters are equivalent to 

curvilinear spacetime. Since the general transformation theory leads to anisotropic parameters 

[1,2] that are inconvenient for experimental implementation, we consider the conformal 

transformation theory [3-5]. Specifically, we discuss a virtual space of 𝑤𝑤 = 𝑚𝑚 + i𝑛𝑛  and a 

physical space of 𝑧𝑧 = 𝑥𝑥 + i𝑦𝑦, which are mapped by an analytical function of 𝑤𝑤 = 𝑓𝑓(𝑧𝑧) and 

satisfy the Cauchy-Riemann conditions given by 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 and 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = −𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕. 

As the theory of conformal transformation optics suggests [3-5], the optical path in the 𝑤𝑤 

space is the same as that in the 𝑧𝑧 space. The concept of optical path should be replaced by heat 

flux in thermotics. The heat flux in the 𝑤𝑤 space is the same as in the 𝑧𝑧 space. The heat flux 



8 
 

in the 𝑧𝑧 space (denoted by 𝐽𝐽𝑧𝑧) is determined by 

 𝐽𝐽𝑧𝑧 = −𝜅𝜅𝑧𝑧∇𝑧𝑧𝑇𝑇. (S20) 

Similarly, the heat flux in the 𝑤𝑤 space (denoted by 𝐽𝐽𝑤𝑤) is described by 

 𝐽𝐽𝑤𝑤 = −𝜅𝜅𝑤𝑤∇𝑤𝑤𝑇𝑇. (S21) 

The conformal transformation of 𝑤𝑤 = 𝑓𝑓(𝑧𝑧) zooms in the 𝑧𝑧 space with a ratio of 

 |𝑓𝑓′(𝑧𝑧)| = �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�. (S22) 

Therefore, the gradient operations in these two spaces satisfy 

 ∇𝑧𝑧= �𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� ∇𝑤𝑤. (S23) 

To ensure the same heat fluxes (i.e., 𝐽𝐽𝑧𝑧 = 𝐽𝐽𝑤𝑤), we can obtain 

 𝜅𝜅𝑧𝑧∇𝑧𝑧𝑇𝑇 = 𝜅𝜅𝑧𝑧 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� ∇𝑤𝑤𝑇𝑇 = 𝜅𝜅𝑤𝑤∇𝑤𝑤𝑇𝑇. (S24) 

Then we can derive the thermal conductivity transformation, 

 𝜅𝜅𝑧𝑧 = 𝜅𝜅𝑤𝑤 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
−1

. (S25) 

To discuss the transformation principle of the product of mass density and heat capacity, 

we further consider the governing equation of heat diffusion in the 𝑧𝑧 space or that in the 𝑤𝑤 

space, 

 𝜌𝜌𝑧𝑧𝐶𝐶𝑧𝑧
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜅𝜅𝑧𝑧∇𝑧𝑧2𝑇𝑇 = 0, (S26) 

 𝜌𝜌𝑤𝑤𝐶𝐶𝑤𝑤
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜅𝜅𝑤𝑤∇𝑤𝑤2 𝑇𝑇 = 0. (S27) 

The substitution of Eqs. (S23) and (S25) into Eq. (S26) yields 

 𝜌𝜌𝑧𝑧𝐶𝐶𝑧𝑧
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜅𝜅𝑤𝑤 �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
−1
�𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
2
∇𝑤𝑤2 𝑇𝑇 = 0. (S28) 

Comparing Eqs. (S27) and (S28), we derive 

 𝜌𝜌𝑧𝑧𝐶𝐶𝑧𝑧 = 𝜌𝜌𝑤𝑤𝐶𝐶𝑤𝑤 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�. (S29) 

Therefore, the theory of conformal transformation thermotics can be summarized as 
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 𝜅𝜅𝑧𝑧 = 𝜅𝜅𝑤𝑤 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�
−1

, (S30a) 

 𝜌𝜌𝑧𝑧𝐶𝐶𝑧𝑧 = 𝜌𝜌𝑤𝑤𝐶𝐶𝑤𝑤 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�. (S30b) 

We consider the following conformal transformation, usually used to design the trapping 

effect in optics, 

 𝑤𝑤 = ln𝑧𝑧. (S31) 

Then we derive the graded thermal parameters from Eqs. (S30a) and (S30b), 

 𝜅𝜅𝑧𝑧 = 𝜅𝜅𝑤𝑤𝑟𝑟, (S32a) 

 𝜌𝜌𝑧𝑧𝐶𝐶𝑧𝑧 = 𝜌𝜌𝑤𝑤𝐶𝐶𝑤𝑤𝑟𝑟−1, (S32b) 

with a definition of 𝑟𝑟 = |𝑧𝑧| = �𝑥𝑥2 + 𝑦𝑦2. The graded thermal parameters described by Eqs. 

(S32a) and (S32b) also lead to the imitated advection pointing towards the center. Therefore, 

the parameters applied in the main text satisfy the requirement by designing the imitated 

advection pointing towards the center. 

To summarize, the theory of conformal transformation thermotics linking graded 

parameters and curvilinear spaces provides a qualitative explanation of the physical basis 

between our designed structures and thermal trapping. 
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Figure S1. Comparison between the imitated advection (I. A.) and realistic advection (R. A.). 

(a) and (b) Steady case with 𝑇𝑇∗ as a function of 𝑥𝑥/𝐿𝐿. (c) and (d) Transient case with 𝑇𝑇∗ as a 

function of 𝑡𝑡/𝑡𝑡0 at 𝑥𝑥/𝐿𝐿 = 0.5. 𝐿𝐿 = 0.2 m, 𝜅𝜅0 = 400 W m-1 K-1, 𝜌𝜌0 = 8900 kg/m3, 𝐶𝐶0 =

390  J kg-1 K-1, 𝛼𝛼 = −20  m-1, 𝑇𝑇𝑝𝑝 = 0.5(𝑇𝑇ℎ − 𝑇𝑇𝑐𝑐)cos(2𝜋𝜋𝜋𝜋/𝑡𝑡0) + 0.5(𝑇𝑇ℎ + 𝑇𝑇𝑐𝑐)  K, 𝑇𝑇ℎ =

363 K, 𝑇𝑇𝑐𝑐 = 283 K, and 𝑡𝑡0 = 100 s. F.: Forward; B.: Backward. 
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Figure S2. One-dimensional thermal trapping. (a) Wave focusing by a graded refractive index. 

(b) Thermal trapping by a graded thermal conductivity. (c1)-(c3) Simulated results of thermal 

trapping at 0 , 2 , and 10  s, respectively. (d) 𝑇𝑇∗  as a function of 𝑥𝑥/(2𝐿𝐿) . (e) 𝑇𝑇∗  as a 

function of 𝑥𝑥/(2𝐿𝐿) in a homogeneous medium with constant thermal diffusivity of 𝐷𝐷0. 𝐿𝐿 =

0.1 m, 𝜅𝜅0 = 400 W m-1 K-1, 𝜌𝜌0 = 8900 kg/m3, 𝐶𝐶0 = 390 J kg-1 K-1, and 𝛼𝛼 = −100 m-1. 

The initial normalized temperature is set at 𝑇𝑇∗ = 𝑒𝑒−(50𝑥𝑥−2.5)2 , and the normalized 

temperatures at the left and right boundaries are set at 𝑇𝑇∗ = 0. 


