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S1. Effective emissivity of cylindrical cavities
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FIG. S1. The effective emissivity of cylindrical cavities. (A) Schematic of different cylindrical cavities.

The effective emissivity, εe, of a cylindrical hole drilled through a copper slab placed on a paper sheet is

equivalent to that of a surface of the same cross-section and emissivity εe, or to that of a cylindrical hole

of appropriate depth drilled in solid copper. (B) Side view of the cylindrical cavity used in the calculation

of the effective emissivity of Eq. (S5). The effective emissivity of the cavity with surfaces Ω1 and Ω2,

respectively of emissivity ε1 and ε2, coincides with that of a surface Ω0 of emissivity εe. (C) Comparison of

the effective emissivity, εe, of projection-screen-bottom (ε2 = 0.04, blue curve), copper-bottom (ε2 = 0.26,

black curve), white-wall-bottom (ε2 = 0.8, purplish red curve), and paper-bottom (ε2 = 0.9, red curve)

cylindrical cavities.

When the bottom and wall of a cylindrical cavity of diameter D are made of the same material,

one can easily calculate the cavity effective emissivity [1],

εe =

[
1 +

S 2

S 1 + S 2

(
1
ε
− 1

)]−1

, (S1)

2



where S 1 = πDh and S 2 = πD2/4 are the areas of the lateral and bottom surfaces, and ε is

the material emissivity. One can tune the effective emissivity of the cavity by varying its depth.

However, in many applications the bottom and the wall of the cavity can be made of different

materials or kept at different temperatures, so that the radiation from the bottom and the wall

are also different (Fig. S1A). Therefore, we need to generalize Eq. (S1) to the case of cavities

delimited by N surfaces with different radiation properties [2]. For the k-th surface, Ωk (with

k=1,2,. . . ,N), of area S k and temperature Tk, we have
N∑

j=1

(
δk j

ε j
− Fk− j

1 − ε j

ε j

)
Q j

S j
=

N∑
j=1

(
δk j − Fk− j

)
σT 4

j , (S2)

where δk j is the Kronecker symbol, Fk− j = (1/S k)
∫

S k

∫
S j

cosϕk cosϕ j/(πr2) dS k dS j are configu-

ration factors that represent the energy radiated per unit of area by the surface Ωk and absorbed by

the surface Ω j. Here, ϕk (ϕ j) is the angle the normal to dS k ( dS j) form with the line connecting

the two surface elements and r is their distance. Q j is the incident radiation power on Ω j, T j the

temperature of Ω j, and σ denotes the Stefan–Boltzmann constant. For the geometry of Fig. S1B,

the relevant Eq. (S2) reads(
1
ε1
− F1−1

1 − ε1

ε1

)
Q1

S 1
− F1−2

1 − ε2

ε2

Q2

S 2
− F1−3

1 − ε3

ε3

Q3

S 3
= σ

[
(1 − F1−1)T 4

1 − F1−2T 4
2 − F1−3T 4

3

]
,

−F2−1
1 − ε1

ε1

Q1

S 1
+

1
ε2

Q2

S 2
− F2−3

1 − ε3

ε3

Q3

S 3
= σ(−F2−1T 4

1 + T 4
2 − F2−3T 4

3 ),

−F3−1
1 − ε1

ε1

Q1

S 1
− F3−2

1 − ε2

ε2

Q2

S 2
+

(
1
ε3
− F3−3

1 − ε3

ε3

)
Q3

S 3
= σ

[
−F3−1T 4

1 − F3−2T 4
2 + (1 − F3−3)T 4

3

]
.

(S3)

In Fig. S1B, the radiating surfaces Ω1 and Ω2 can be replaced by one equivalent circular surface,

Ω0, with the same diameter and temperature of the bottom surface. The surface Ω3 with an area of

S 3, equivalent to the external environment, is a cap covering cavity opening for enclosure analysis,

so that we can calculate the transferring energy from the hole/surface to the environment. The

corresponding system of Eqs. (S3) is then replaced by
1
ε2

Q0

S 2
− F0−3

1 − ε3

ε3

Q3

S 3
= σ(T 4

1 − F0−3T 4
3 ),

−F3−0
1 − εe

εe

Q0

S 2
+

(
1
ε3
− F3−3

1 − ε3

ε3

)
Q3

S 3
= σ

[
−F3−0T 4

1 + (1 − F3−3)T 4
3

]
.

(S4)

By making use of the reciprocity of the configuration factors, Fi− j, we eliminate Ω3 from Eqs. (S4)

and thus determine the cavity effective emissivity

εe = −
A0 + A1

S 1
S 2

B0 + B1
S 1
S 2

+ B2( S 1
S 2

)2
, (S5)
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where A0 = [ε1(2F1−0 − 1) − 2F1−0][ε2(F2−0 − 1) − F2−0], A1 = (ε2 − 1)F1−0[ε1(F1−0 − 1) − F1−0],

B0 = ε2F2−0[ε1(2F1−0 − 1) − 2F1−0], B1 = F1−0[ε1ε2(F1−0 + 2F2−0 − 1) − 2ε1F2−0 − ε2F1−0],

and B2 = ε1(ε2 − 1)F2
1−0. For ε1 = ε2, S 1 = πDh, and S 2 = πD2/4, Eq. (S5) boils down to

Eq. (S1). Then we set S 1 = πDh, S 2 = πD2/4, and F2−0 = [x2 −
√

x2 (
x2 + 4

)
+ 2]/2 with

S 1F1−0 = S 2F2−1 [2]. The corresponding curves εe versus the cavity aspect ratio, h/D, are plotted

in Fig. S1C for four cases: (i) copper wall and projection-screen bottom with ε1 = 0.26 and

ε2 = 0.04; (ii) copper wall and copper bottom with ε1 = ε2 = 0.26; (iii) copper wall and white-

wall bottom with ε1 = 0.26 and ε2 = 0.80; (iv) copper wall and paper bottom with ε1 = 0.26

and ε2 = 0.90, respectively. Notice that in the case of higher emissivity bottom, (iv), the effective

emissivity of the cavity increases sharply with lowering h/D.

S2. Design and characterization of the radiating metadevice

Our experimental setup is shown in Fig. S2A. The designed metadevice is a 10 × 15 array of

copper cubes 1 × 1 × 1 cm3 in size. The effective emissivity of the solid cubic units was measured

to be 0.26. To realize higher emissivity units, we drilled a hole 0.8 cm in diameter across some of

the copper cubes. Units of both types were arranged on a clear acrylic lattice and then placed on

a sheet of matte paper with effective emissivity of 0.90. The metadevice thus obtained is finally

placed on a heating plate set at 50 ◦C. The temperatures of the paper sheet and copper units can be

assumed to be the same as the heating plate. According to Eq. (S5), the effective emissivity of the

hollow copper cube on paper is 0.77, which would be equivalent to that of a cavity with copper

bottom of same cross-section but h = 1.8 cm deep, as illustrated Fig. S1C. A thermal infrared

camera Fotric 430 was placed 0.6 m above the metadevice to record the spatial distribution of the

surface temperature. The temperature pattern reported in Fig. S2B was obtained from the camera

readings for a homogeneous surface emissivity, ε = 0.98. By rescaling the temperature of each

array unit for its calculated effective emissivity, εe, the array temperature turned out to be uniform

and close to the temperature, 50◦C, of the heating plate (see Fig. S2C). This result validates our

calculations for the effective emissivity in Eqs. (S2)-(S5). Finally, by arranging solid copper

cubes with εe = 0.26 and paper-bottom hollow copper cubes with εe = 0.77, our metadevice can

be used to generate the 2D thermal infrared patterns of any targeted virtual object, as illustrated in

Fig. S2B.

S3. Finite-element simulation of a thermal infrared pattern with non-uniform tempera-

ture

The metadevice used in our experiments was made of two kinds of cubic units, solid and hol-
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FIG. S2. Experimental details and validation. (A) Photograph of the experimental setup. (B) Thermal

infrared pattern of a padlock. Camera temperature reading for a preset homogeneous surface emissivity,

ε = 0.98. (C) The corresponding temperature readings rescaled for the effective emissivity of the two types

of units, εe = 0.26 (copper-bottom) and 0.77 (paper-bottom). All rescaled temperatures come close to the

temperature of the heating plate (set at 50◦C.)

low. In preparation for future work, we also performed finite-element simulations of the thermal

infrared patterns, we expect to generate by using units of tunable depth (stacked by a certain

number of units with unit thickness in each hollow). An example is illustrated in Fig. S3. The

simulation box was a 15 × 10 2D array of copper cubes 1 × 1 × 1 cm3 in size, like in the exper-

iment of S2. We considered the case of just two types of metadevice units: solid copper cubes

(thermal conductivity κ = 400 W m−1 K−1), and hollow copper cubes with a cylindrical cavity

of fixed diameter, D = 0.8 cm but tunable depth, h. Then we artificially arranged these units

into the pattern of a cup, like in Fig. S3A. The bottom surface of the box was modeled as a ho-

mogeneous heat source at fixed temperature of 323.15 K (50 ◦C). The upper surface of the box

and the walls and bottoms of the cube cavities were treated as open boundaries with emissivity

ε = 0.26 and subject to an external air-convective heat flux with convective coefficient h0 = 50

W m−2 K−1 at Tair = 273.15 K. The four sides of the box were thermally insulated. By encoding

the desired environmental parameters in the finite-element algorithm (Fig. S3B), we calculated

the stationary temperature profiles of the metadevice. As shown in Fig. S3C, units with deeper
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cavities correspond to higher temperatures, which is consistent with the our experimental results

and the theoretical discussion of S1. The final result is the thermal infrared pattern of a cup with

non-uniform temperature.

FIG. S3. Finite-element simulation scheme. (A) Size and pattern of a metadevice made of cubic units with

cylindrical cavity of tunable depth. (B) Encoding of a physical environment in the finite-element algorithm.

(C) Calculated thermal infrared pattern of a cup with non-uniform temperature.
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